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Who Are We?
R DRAPER

Recognized world leader in GN&C

APOLLO

safely brought NASA astronauts to the moon and back

$600M+

in U.S. government
and commercial
contracts annually
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Lander Performance and ISRU

« Strategic lander placement
« Crater rim — light/power beaming
« Edge of lava tube — tether anchor
« Recharging stations for rovers

» Avoid hazards

* Reduce traverse times for rovers

« Co-location of additional infrastructure

Draper Vision-Based Navigation can make
it happen!
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Precision Lunar Landing: History and Objectives

Li, Shuang, Xiugiang Jiang, and Ting Tao. "Guidance summary and assessment of the

N Table 1 Landing error summary of all successful lunar
f?; landing missions

Q

é Launch date

x Missions Manned or not  (yyyy.mm.dd) Landing error
E Apollo 11 Manned 1969.07.16 ~6.6 km

g Apollo 12 Manned 1969.11.14 ~160 m

§ Apollo 14 Manned 1971.01.31 ~340 m

& Apollo 15 Manned 1971.07.26 ~550 m

5 Apollo 16 Manned 1972.04.16 ~280 m

] Apollo 17 Manned 1972.12.07 ~400 m

3 Surveyor 1 Unmanned 1966.05.30 ~18.96 km
= Surveyor 3 Unmanned 1967.04.17 ~2.76 km
._g Surveyor 5 Unmanned 1967.09.08 A few km

5 Surveyor 6  Unmanned 1967.11.07

© Surveyor7  Unmanned 1968.01.07

g Luna 9 Unmanned 1966.01.31 A few km to tens of km
o Luna 13 Unmanned 1966.12.21

3 Luna 16 Unmanned 1970.09.12

3 Luna 17 Unmanned 1970.11.10

5;3 ~ Luna 20 Unmanned 1972.02.14

23 Luna 21 Unmanned 1973.01.08

& Luna 24 Unmanned 1976.08.09

'g>§' Chang’e -3 Unmanned 2013.12.02 ~89 m
58
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Apollo Landing Performance

Referenced to Pre-Mission Planned Landing Point
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Surveyor 3 Landing Accuracy

The Surveyor | spacecraft was soft-landed on the lunar
surface 18.96 km from the desired location.

Surveyor |Il 2.76 km from its desired location.

The landings were within the predicted regions of
uncertainty as determined in flight,

—  Surveyor |: approximately 39 km, 3-c

—  Surveyor lll: approximately 15 km, 3-c

— The major sources of landing site error are the orbit
determination computational accuracy and the spacecraft
hardware tolerance uncertainties.

The landing locations were determined from Lunar Orbiter Charlos “Pote” Conrad Jr., Apollo 12 Commander,
and spacecraft photographs along with Earth-based radio stands next to Surveyor 3. In the background is

. the Apollo 12 Lunar Module, Intrepid.
tracking data.

RIBARICH, J. (1968). Surveyor spacecraft landing accuracy. o o .
Journal of Spacecraft and Rockets. 5. 10.2514/3.29355. designing a navigation system to increase our

accuracy by several orders of magnitude
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From Apollo 11 to the Future of Safe and Precise Lunar Landing

Key enablers for autonomous precision lunar landing: : s
1. Vision-Based Navigation — including terrain relative navigation
(template and crater matching) and visual odometry (optic
flow)

Hazard Detection (crater, boulder, slope)

3. Safe Site Selection and Hazard Avoidance (divert capability)

no

*  We have done precision landing with hazard avoidance and Ll
safe site selection on the moon before, but using
human/astronaut eyes for:

— Navigating and identifying the landing region
— ldentifying hazards, or hazardous areas
— Selecting a safe site to land and diverting there

LANDING FOOTPRINT AS SEEN BY PILOT
FROM 8000 FT ALTITUDE
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Mission Overview and Terminology
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Draper Descent GN&C Maneuvers and Sensors
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Lacus Mortis: Descent Trajectory and Velocity

Landing Site : LacusMortis

Courtesy: https;ffastropediaastrogeology.usgs.govidownload/
Moon/LROYLOLA AhumbsMaon_LRO_LOLA_glotal_LDEM_ 1024 jpg
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Region Around Lacus Mortis 4 kmx 10 km landing
target for “blind” landing

Variation of the surface elevation in this
area is: 80m 1-sigma ’

APJOLLO™
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Vision-Based Navigation



What is Vision-aided Navigation?

 Vision-aided Navigation Definition Unknown Feature Tracking (“Relative”

* Vision: Extracts information from images — Navigation)
use a camera as a sensor

+ Aided: Vision measurements are added to a
filter that fuses information from multiple
sensors, typically including at least an IMU

* Navigation: Estimation of system position,
velocity, and attitude

» Detect and track features that were not known a priori through a
series of images

* Informs relative motion of the system (i.e., drifts slowly over time)

Terrain Relative Navigation (TRN) (“Absolute”

Navigation)
* Match features in an image to a database of landmarks with
known location and appearance

* Informs absolute position of the system relative to some
coordinate frame (drift-free)

» Approach 1: Detect features in the environment and then match
them to known landmarks

* Approach 2: Search for specific landmarks predicted to appear in
the camera field of view
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Tracker: Unknown Feature Tracking

Detects and tracks opportunistic landmarks in consecutive images
Algorithm Description:

Features (points of high contrast) are
detected in an image and then tracked
(re-detected) in subsequent images,
forming a list of 2D measurements in
time.

New features are detected to replace
tracks that end. Information content is
proportional to track length, so the goal is
to track long-lived features.

Outliers are detected and removed
geometrically using multi-modal 2-frame
RANSAC.
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Catena: Crater-based Terrain Relative Nav

Detects craters in the camera image and matches them to a database
Algorithm Description:

When the sun is sufficiently low (e.g., Lunar
dawn), one side of a crater is in a very dark
shadow and the opposite side appears very
bright in the image.

Using knowledge of the sun direction, we pair
dark and bright regions of the image, extract
their edges corresponding to a possible crater
rim, and then fit an ellipse to these edges.

Detected craters are matched to the database
using a nearest-neighbor constellation match.

DRAPER | APOLLO™ 1



IBAL: Image-based Absolute Localization (TRN)

Correlate terrain image patches against the camera
Algorithm Description: '

Based on the predicted camera pose, we
find the set of landmarks expected to appear
in the field of view and warp them to the
camera projection.

Each landmark is compared pixel-wise
against the camera image using normalized
cross-correlation. The landmark is located at
the peak of the correlation surface.

Outliers are detected and removed
geometrically using the PnP RANSAC
algorithm.

DRAPER | APOLLO™ 18



DRAPER !

Navigation Performance
Analysis



Navigation System Sensitivity Analysis

* A navigation analysis was conducted using Draper’s linear covariance (LinCov) tool to determine the
landing error due to uncertainties or errors in the navigation system

» The vehicle’s capability depends on its navigation uncertainty and guidance/control capability.

— Preliminary navigation error analysis is presented

— Guidance and control capability are assumed to be ideal for this analysis

— No dispersion analysis done yet (i.e., trajectory disturbances due to guidance and control errors,

unmodeled accelerations, etc.)

* This first order analysis gives a rough idea of the overall system capability including sensitivities for

position and velocity navigation errors based on sensitivity to:

— initial navigation errors
— process noise
— each sensor, treated as a whole
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Baseline Sensors
IMU
Star Tracker
Rangefinder
Velocimeter

LN200C
MAI-SS
Navigation Doppler Lidar
Navigation Doppler Lidar

Camera 512 x 512 pixels; 43.3 deg full FOV

Known Feature Tracking (crater or template matching)

Up to 3 features tracked in 0.5 Hz images

Unknown Feature Tracking
Up to 3 features tracked in 0.5 Hz images
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Touchdown Absolute Position and Relative Velocity Performance
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Vision-Nav Sensitivity Analysis

Precision Landing Relative to a Lunar Target

Component

30 Terminal Errors

Absolute (Inertial)
Horizontal
Position [m]

Target-Relative
Horizontal
Position [m]

Target-Relative
Horizontal
Velocity [m/s]

Others (no errors active here) 0.0 0.0 0.00
Zero (no errors active) 0.0 0.0 0.00
Initial Conditions 0.7 0.0 0.00
Process Noise (SRP, attitude control) 0.0 0.0 0.00
Gyro 2.7 0.2 0.03
Accelerometer 4.4 0.4 0.05
Startracker 0.7 0.0 0.00
Altimeter Pointing 1.8 0.0 0.00
Altimeter Relative 0.5 0.1 0.00
Range Sensor (rangefinder measurement for HD) 0.1 0.0 0.00
Optical Features (camera measurement for HD) 0.0 0.1 0.00
Known Feature Tracking 20.3 0.1 0.01
Unknown Feature Tracking 5.7 1.3 0.08
Velocimeter 2.5 1.0 0.07|
RSS (Total) 22.0 1.7 0.12
Requirement 10.0 0.30)
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Draper and The New Moon Race

Draper is part of five teams selected by NASA
recently to conduct studies and produce prototypes
of human landers for the agency’s Artemis lunar
exploration program. The NASA contracts, which
carry a potential value of up to $45.5M, further the
agency’s goal to put American women and men on
the Moon by 2024 as a step toward establishing

sustainable missions by 2028.

Image Credit NASA
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Discussion
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Final Position and Velocity Nav Error Sensitivity
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Complementary and Future Work

« Camera trade studies and radiometry modeling

« Space-qualified processor evaluation for image processing and
navigation measurement generation

« Computational benchmarking of VBN algorithms

» Closed-loop GN&C and VBN using hardware and software in-the-loop
« SPLICE Flight Test of VBN algorithms in terrestrial environment

» Draper selected as a NASA CLPS prime contractor

» Draper is a subcontractor to ispace for blind and precision lunar landings
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